

Aug 8, 2019 Page 1 of 13 Rev 1.00

M451 Series

Example Code Introduction for 32-bit NuMicro® Family

Information

Application
The document introduces how to port µC/OS-III on M451 and
demonstration a sample code bases on µC/OS-III RTOS.

BSP Version M451 Series BSP CMSIS v3.01.002

Hardware NuTiny-EVB-M451-LQFP100 V1.3

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

UCOSIII Porting

Aug 8, 2019 Page 2 of 13 Rev 1.00

M451 Series

1 Function Description

1.1 Introduction

This example code demonstrates how to port µC/OS-III on NuMicro® M451 Series MCU.

Micro-Controller Operating Systems (MicroC/OS, stylized as µC/OS) is a real-time operating

system (RTOS) designed by embedded software developer, Jean J. Labrosse in 1991. Based

on the source code written for µC/OS, and introduced as a commercial product in 1998,

µC/OS-III is a portable, ROM-able, scalable, preemptive, real-time, deterministic, multitasking

kernel for microprocessors, and digital signal processors (DSPs). Most of µC/OS-III is written

in highly portable ANSI C, with target microprocessor-specific code written in assembly

language. Use of the latter is minimized to ease porting to other processors. (Refer to

https://en.wikipedia.org/wiki/Micro-Controller_Operating_Systems).

This example code achieves porting the µC/OS-III on NuMicro® M451 Series MCU.

The main system configuration of the M451 MCU is as follows:

 System clock frequency is 48 MHz

 Clock source is from PLL, and PLL source is from HXT

 SysTick interrupt period is 1 ms

1.2 Porting µC/OS-III

An easiest way to port µC/OS-III is to download µC/OS-III BSP with same CPU core from

the Micrium Web site.

1.2.1 Start up

To search a similar BSP with same CPU Core from following website.

https://www.micrium.com/downloadcenter/

1.2.2 Configuration µC/OS-III

Three files are used to configure µC/OS-III as highlighted in the figure below: os_cfg.h,

os_cfg_app.h and os_type.h. If download µC/OS-III with same CPU Core, these files aren’t

necessary to change.

Aug 8, 2019 Page 3 of 13 Rev 1.00

M451 Series

os_cfg.h

It is used to determine which features are needed from µC/OS-III for an application (i.e., product). Specifically,

this file allows a user to determine whether to include semaphores, mutexes, event flags, run-time argument

checking, etc.

os_cfg_app.h

It is used to configured at the application level through #define constants in os_cfg_app.h. uC/OS-III allows a

user to specify stack sizes for all µC/OS-III internal tasks: the idle task, statistic task, tick task, timer task, and the

ISR handler task.

os_type.h

It establishes µC/OS-III-specific data types used when building an application. It specifies the size of variables

used to represent task priorities, the size of a semaphore count, and more. This file contains recommended data

types for µC/OS-III, however these can be altered to make better use of the CPU’s natural word size. For example,

on some 32-bit CPUs, it is better to declare boolean variables as 32-bit values for performance considerations,

even though an 8-bit quantity is more space efficient

1.2.3 Porting Files Under uCOSIII\BSP

The files under the folder refer to code associated with the actual evaluation board or the

target board used. For example, the BSP defines functions to turn LEDs on or off, reads push-

button switches, initializes peripheral clocks, etc. Basic functions list as following

 bsp.c and bsp.h

These files normally contain functions and their definitions such as:

BSP_Init()

This function is called by application code to initialize the BSP

functionality. BSP_Init() could initialize I/O ports, setup timers, serial ports, SPI ports and so

on.

 bsp_int.c

Hook interrupts between BSP and µC/OS-III.

 bsp_periph.c

To get and set the working frequency of peripherals

Aug 8, 2019 Page 4 of 13 Rev 1.00

M451 Series

 startup_M451Series.s

To modify the PendSV and SysTick Handler’s name for the requirement of µC/OS-III. And

modify Reset_Handler to enable Soft-VFP.

An illustration shows between following figures. The left side is for µC/OS-III. The right side

is for standard (Non-OS) BSP.

1.2.4 Porting Files Under uCOSIII\uCOSIII

All folders under uCOSIII\uCOSIII path, uC-CPU, uC-Lib and uCOS-III, will be kept and

unchanged.

1.2.5 Porting File Under uCOSIII\USER

The folder is used to demonstrate the example code bases on the µC/OS-III. Project code

Aug 8, 2019 Page 5 of 13 Rev 1.00

M451 Series

is located under Keil folder. Code entry is located in file - app.c. Programmer can start to modify

it from the file.

1.2.6 Demo Code Project Architecture

Figure 1-1 Demo code project architecture

1.2.7 Demo Code Project Include Path

. ..
Figure 1-2 Demo code project include path

Aug 8, 2019 Page 6 of 13 Rev 1.00

M451 Series

1.3 Demo Result

The application execution result shows on the semi-hosting#UART1 as shown in Figure

1-3 Demo result

Figure 1-3 Demo result

Aug 8, 2019 Page 7 of 13 Rev 1.00

M451 Series

2 Demo Code Description

Demo code project file located under folder \\M451\bsp\ThirdParty\uCOS-III\Keil\

Initialize system, UART, Memory Management Module and Mathematical Module in main.c.

SYS_Init();

UART0_Init();

/* Disable all interrupts */

BSP_IntDisAll();

/* Initialize the uC/CPU Services */

CPU_Init();

 /* Initialize Memory Management Module */

Mem_Init();

/* Initialize Mathematical Module */

Math_Init();

Following initialize OS and create start tasks.

/* Init uC/OS-III */

OSInit(&err);

 /* Create the start task */

 OSTaskCreate((OS_TCB *)&AppTaskStartTCB,

 (CPU_CHAR *)"App Task Start",

 (OS_TASK_PTR)AppTaskStart,

 (void *)0u,

 (OS_PRIO)APP_CFG_TASK_START_PRIO,

 (CPU_STK *)&AppTaskStartStk[0u],

 (CPU_STK_SIZE)AppTaskStartStk[APP_CFG_TASK_START_STK_SIZE / 10u],

 (CPU_STK_SIZE)APP_CFG_TASK_START_STK_SIZE,

 (OS_MSG_QTY)0u,

 (OS_TICK)0u,

 (void *)0u,

 (OS_OPT)(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),

Aug 8, 2019 Page 8 of 13 Rev 1.00

M451 Series

 (OS_ERR *)&err);

/* Start multitasking (i.e. give control to uC/OS-III). */

 OSStart(&err);

Create application task in start task.

static void AppTaskStart (void *p_arg)

{

 OS_ERR err;

 (void)p_arg;

 /* Initialize BSP functions */

 BSP_Init();

/* Initialize Tick Services */

 BSP_Tick_Init();

/* Compute CPU capacity with no task running */

#if OS_CFG_STAT_TASK_EN > 0u

 OSStatTaskCPUUsageInit(&err);

#endif

#ifdef CPU_CFG_INT_DIS_MEAS_EN

 CPU_IntDisMeasMaxCurReset();

#endif

 APP_TRACE_DBG(("Creating Application Kernel Objects\n\r"));

 /* Create Applicaiton kernel objects */

 AppObjCreate();

 APP_TRACE_DBG(("Creating Application Tasks\n\r"));

/* Create Application tasks */

 AppTaskCreate();

 /* Task body, always written as an infinite loop. */

 while (DEF_TRUE) {

 OSTimeDlyHMSM(0u, 0u, 1u, 100u,

 OS_OPT_TIME_HMSM_STRICT, &err);

 printf("App task \n");

 }

}

Aug 8, 2019 Page 9 of 13 Rev 1.00

M451 Series

3 Software and Hardware Environment

 Software Environment

 BSP version

 M451 Series BSP CMSIS v3.01.002

 IDE version

 Keil uVersion 5.24

 Hardware Environment

 Circuit component

 NuTiny-EVB-M451-LQFP100 V1.3

 Diagram

 Connect Nu-Link ICE to JP2 for downloading code and debugging

NuTiny-EVB-M451-LQFP100 V1.3 Nu-Link

J2
USB

Figure 3-1 Hardware environment

Aug 8, 2019 Page 10 of 13 Rev 1.00

M451 Series

4 Directory Information

 EC_M451_UCOSIII_Porting_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 ThirdParty

 UCOSIII µC/OS-III BSP and demo code

Aug 8, 2019 Page 11 of 13 Rev 1.00

M451 Series

5 How to Execute Example Code

1. Opening the path ThirdParty\UCOSIII\USER\Keil folder by Directory Information (section

4) and double click M451_UCOSIII.uvproj.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

d. Open Semi-Host UART#1 through click menu View\Serial Windows\UART#1

3. Enter debug mode

a. Run

Aug 8, 2019 Page 12 of 13 Rev 1.00

M451 Series

6 Revision History

Date Revision Description

Sep 30, 2019 1.00 1. Initially issued.

Aug 8, 2019 Page 13 of 13 Rev 1.00

M451 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

